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FOREWORD 

T h i s  repor t  descr ibes  t h e  research c a r r i e d  out under Contract 
NAS 8-20306, "Study On Determining S t a b i l i t y  Domains f o r  Nonlinear 
Dynamical Systems," during t h e  period 1 May 1966 to  1 February 1967,  
by t h e  Research Department of Grumman Ai rc ra f t  Engineering Corpora- 
t i o n ,  Bethpage, New York 11714, f o r  t h e  NASA George C .  Marshall  
Space F l igh t  Center, Huntsvi l le ,  Alabama. 

The  object ive of t h i s  study was t o  do research i n  techniques 
f o r  determining exac t ly  o r  w i t h  good approximation t h e  domain of 
s t a b i l i t y  of nonl inear  dynamical systems. The  goa l  of t h e  longer 
study, of which  t h i s  i s  t h e  f i r s t  p a r t ,  i s  t o  develop techniques 
f o r  a n a l y t i c a l l y  determining t h e  s t a b i l i t y  p rope r t i e s  of booster  
guidance schemes i n  order t o  compare competing schemes w i t h  re- 
spect t o  t he i r  a b i l i t y  t o  compensate f o r  off-nominal condi t ions.  
M r .  Commodore C .  Dearman, Jr. of t h e  Aero-Astrodynamics Laboratory 
was responsible  f o r  i n i t i a t i n g  t h i s  study program and ac ted  a s  t h e  
t echn ica l  representa t ive  f o r  NASA. We a r e  g r a t e f u l  t o  M r .  Dearman 
f o r  sponsoring t h i s  study and f o r  h i s  encouragement. 

The study was conducted by D r .  Gunther R.  Geiss ( p r i n c i p a l  
i n v e s t i g a t o r ) ,  D r .  John V. Abbate, and Messrs. James Alberi ,  
Dushan Boyanovitch, Robert M c G i l l ,  David Rothschild,  and Gerald 
E. Taylor.  The authors are indebted t o  Mr. M c G i l l  f o r  h i s  con- 
cep tua l  cont r ibu t ions  t o  t h e  computational aspec ts  of t h i s  study, 
and f o r  cont r ibu t ing  t h e  closed-loop guidance example t h a t  i s  
s tud ied  herein.  We are indebted t o  Messrs. M c G i l l  and Taylor f o r  
making t h e  Min-All algorithm a v a i l a b l e  f o r  t h i s  study, and t o  
Messrs. Taylor, Alberi ,  and Rothschild f o r  conducting t h e  numerical  
experiments and f o r  numerous suggestions regarding t h e  development 
o f  t h e  estimation procedure. 
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ABSTRACT 

This report presents the results of research carried out under 
Contract NAS 8-20306, "Study On Determining Stability Domains for 
Nonlinear Dynamical Systems," for NASA George C. Marshall Space 
Flight Center, 
quadratic estimate of the domain of attraction of an equilibrium 
solution to a quasi-linear autonomous differential equation is de- 
veloped and evaluated. A procedure due to Liapunov for determining 
the Liapunov functions that yield exact information on the temporal 
behavior of linear systems is reviewed and the implications of its 
extension to quasi-linear systems are discussed. A simple closed- 
loop guidance system is analyzed and the unique features of its 
stability properties are illustrated as possible characteristics 
of m m e  complex guidance systems. 
Guidance Mode are reviewed to illustrate the problems that are 
fundamental to the stability analysis of such a system. Conclusions 
of the study and recommendations for further research are presented. 

A numerical procedure for obtaining an optimal 

The equations o f  the Iterative 
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I. INTRODUCTION 

The concepts of Liapunov's d i r e c t  method f o r  t h e  s t a b i l i t y  
ana lys i s  of nonl inear  dynamical systems has generated a cont inua l ly  
expanding research program aimed a t  f ind ing  a n a l y t i c a l  s t a b i l i t y  
ana lys i s  techniques appl icable  t o  highly complex physical  systems. 
The  research e f f o r t  described i n  t h i s  r e p o r t  h a s  been d i r ec t ed  to-  
ward several aspec ts  of t h e  s t a b i l i t y  problem pe r t inen t  t o  t h e  
ana lys i s  of space vehicle guidance systems. 

Present  day guidance systems are  described f o r  f i n i t e  i n t e r -  
v a l s  of t i m e  by nonl inear ,  nonautonomous d i f f e r e n t i a l  equations.  
Moreover, t h e  con t ro l  laws f o r  these systems a r e ,  i n  some cases ,  
generated by i terat ive procedures. 
p l i c a t e d  than any system w h i c h  h a s  been successfu l ly  analyzed by 
c u r r e n t  s ta te  of t h e  a r t  s t a b i l i t y  ana lys i s  techniques o the r  than 
simulation. Before an ana lys i s  of an a c t u a l  guidance system can 
be undertaken, i t  i s  necessary t o  review and expand our knowledge 
of several fundamental aspec ts  of t h e  over -a l l  problem of s t a b i l i t y .  

Such a system i s  f a r  more com- 

Our e f f o r t  i n  t h i s  study was focused on: a )  e f f e c t i v e  use of 
present  techniques and t h e  development of new techniques f o r  de t e r -  
mining t h e  domain of s t a b i l i t y  (exact ly  o r  approximately) of high 
order  nonl inear  systems; b) numerical means f o r  implementing t h e s e  
techniques; c) t h e  r e l a t ionsh ip  of Liapunov s t a b i l i t y  t o  f i n i t e  
t i m e  s t a b i l i t y ;  d) s t a b i l i t y  ana lys i s  of nonautonomous systems; 
e) formulation of mathematical models of guidance schemes; and 
f )  a n a l y s i s  of a s impl i f ied  time-dependent closed-loop guidance 
system. Basic research h a s  been i n i t i a t e d  i n  each of t h e s e  areas 
and t h e  preliminary r e s u l t s ,  reported here in ,  should serve as t h e  
foundations of an expanded research program ul t imate ly  leading t o  
success fu l  s t a b i l i t y  analyses of booster guidance systems and t h e  
l a r g e  class of r e l a t e d  systems. 

Sect ion I1 of t h i s  r epor t  descr ibes  t h e  formulation and develop- 
ment of a numerical algorithm f o r  determining an "optimal" quadrat ic  
estimate of t h e  domain of a t t r a c t i o n  of an equilibrium so lu t ion  
of a quas i - l i nea r  d i f f e r e n t i a l  equation. The  estimate i s  optimal 
i n  t h e  sense of l a r g e s t  enclosed volume and i s  based upon t h e  use  
of a quadra t ic  form Liapunov function. This s ec t ion  a l s o  descr ibes  
t h e  numerical  experiments performed w i t h  t h i s  algorithm and t h e  con- 
c l u s i o n s  drawn from them. 
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Section 111 descr ibes  a procedure due t o  Liapunov f o r  calcu- 
l a t i n g  the Liapunov funct ions t h a t  determine t h e  exact temporal 
behavior of a l i n e a r  system. Hopefully,the procedure can be ex- 
tended t o  quas i - l inear  systems, i n  which case i t  can be used f o r  
evaluat ing t h e  s t a b i l i t y  of f i n i t e  t i m e  systems. 

Section I V  descr ibes  a simple closed-loop t i m e  dependent 
quidance s y s t e m  derived from Zermelo's problem. An ana lys i s  of 
t h e  autonomous approximation t o  t h i s  system i s  presented and an 
approximate method f o r  analyzing t h e  a c t u a l  nonautonomous system 
i s  described. 

I n  Section V,  w e  review t h e  equations descr ibing t h e  I terat ive 
Guidance Mode and make some comments concerning t h e  s t a b i l i t y  anal-  
y s i s  of such a system. 

The l a s t  sec t ion  ( V I )  p resents  t h e  conclusions drawn from t h i s  
study and some recommendations f o r  f u r t h e r  research . 
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11. OPTIMAL QUADRATIC ESTIMATION 

OF THE DOMAIN OF ATTRACTION 

A. Problem Formulation 

Br i e f ly ,  t h e  procedure, which was f i r s t  described i n  Ref. 1 
and i s  s tud ied  here ,  i s  based upon choosing t h e  quadrat ic  form 
Liapunov funct ion t h a t  y i e l d s  t h e  l a r g e s t  estimate of t he  domain 
of a t t r a c t i o n  f o r  t h e  given motion and system of equations.  
p a r t i c u l a r ,  assume t h a t  t h e  system i s  of t he  form 

I n  

i o e . ,  i t  i s  n-dimensional, autonomous, quas i - l inear ,  and s t a b l e .  
A s  a r e s u l t  of t h e s e  assumptions t h e  quadrat ic  Liapunov funct ion V,  

T 
V(x) = x Px , P > 0 , 

w i l l  have as i t s  time de r iva t ive  

T T V(X) = - x QX + 2~ Pf(x)  , 

where  Q i s  determined from t h e  Liapunov equation 

T - Q = A P + P A  . 
If Q i s  chosen t o  be p o s i t i v e  d e f i n i t e ,  then P w i l l  be posi-  
t i v e  d e f i n i t e  as a r e s u l t  of A being s t a b l e  and 0 w i l l  be 
nega t ive  i n  t h e  region 

(3)  

( 4 )  

w h e r e  Amin(Q) and hmax(P) a re ,  r e spec t ive ly ,  t h e  minimum 
eigenvalue of Q and t h e  maximum eigenvalue of P. 
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According to LaSalle and Lefschetz (Ref. 2) an estimate of 
the domain of attraction of the equilibrium solution 
of Eq. (I)* is given by 

x(t) = 0 

4 
~ 

if RQ is bounded. Thus, relative to this choice of V(x), 
i.e., the choice of Q, the best estimate is obtained by de- 
fining the set E as 

E: (x I t(x) = 0 , x # 0 )  

and then choosing 1 to be 

R = min V(x) Io 

X E E  

Then, the optimal choice of Q from the set of all positive 
definite n x n matrices, denoted Qo, is defined by 

where 
1 - 1 n -2 2 

J ( Q )  = Qn'2 ( Ti' hi(P)) = \det ! a n \  p, . 
i=l 

0 This definition of Q [Eq. (9)] will yield the best estimate in 
terms of enclosed volume, of the domain of attraction under the 
constraint that V(x) be a positive definite quadratic form. 
Thus, an optimal estimate of the domain of attraction with re- 
spect'to quadratic form Liapunov functions can be obtained via a 
numerical algorithm that solves Eqs. (8) and (9). 

* 
N . B .  Hereafter it will be understood that we are concerned with 

the equilibrium solution x(t) = 0 of Eq. (1). 

(7) 



B. 

E q s .  

1. 

Development of the Numerical Algorithm 
0 Before the quantities ,t and Q can be computed from 

(8) and ( 9 ) ,  four problems must be resolved, viz .: 
1) How to generate the set of positive definite 

n x n matrices fromwhich candidate Q matrices 
are chosen. 

2)  How to solve the Liapunov equation [Eq .  ( 4 ) l  for 
P given A and Q. 

3)  How to handle the constraints implied in Eqs. (8) 
and ( 9 ) ,  viz, that x be an element of set E 
and that Q be positive definite. 

4 )  How to efficiently compute the minimum of a function. 

Parameterization of the Set of Positive Definite Matrices 

The generation of the set of positive definite n x n matrices 
can be carried out by resorting to the brute force approach of form- 
ing an arbitrary 
terminantal test (Ref. 3) to determine if it is PO itive definite. 
This procedure requires the arbitrary choice of w- matrix 
elements and then the evaluation of the determinants of the n- 
principal minors of the matrix. However, it does not provide in- 
formation on how to correct a candidate matrix that fails the test 
for positive definiteness. Therefore, it would be desirable to 
generate the matrix by a procedure that guarantees the matrix is 
positive definite and spans the entire set of positive definite 
matrices. In this section, we develop such a procedure based upon 
the work of Murnaghan (Ref. 4 )  on the parameterization of the group 
of unitary matrices . 

n x n symmetric matrix and then applying the de- 

It is well known (Ref. 3)  that all real symmetric matrices are 
orthogonally similar to a diagonal matrix, and that all positive 
definite (pd) matrices are then orthogonally similar to a diagonal 
matrix with positive diagonal elements; i.e., let Q be pd, then 

T Q = S A S  , 
where 
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A . > O  3 i = 1, 2, ..., n 
1 

T S S = I  . 
Thus, the parameterization of all pd matrices Q is reduced 
to the parameterization of the group of orthogonal matrices S .  

In Ref. 4 ,  Murnaghan proves that the parameterization of 
the group of n x n unitary matrices U is accomplished by 
the factorization 

where 

D = diag {e ibl , e ib2 , ...) e "n-1, eign) , 

- - L2n - k)(k - 1) + 

Y 2 



kii = 1 , i # k,j 

IUk k  = cos e 

u " 0 ,  i # j  , i , j  Bk,,! I i j  
- i a  - -  - e  s i n  8 UkR 

u = + e+i0 s i n  e , Ik 

I T h e  f a c t o r i z a t i o n  of t h e  group of orthogonal matrices i s  i m -  
I mediately obtained by requi r ing  U t o  be real ;  i.e., 6 = CI = 0, 

Ik-1 

D1 = diag Jl, 1 + - 1) Y 

7 



In - - thetas  and n p h i s ,  2 T h i s  f a c t o r i z a t i o n  conta ins  

o r  a t o t a l  of 

Eq. (12)  r a i s e  t h e  number of parameters t o  
one more than required.  Thus i f  w e  res t r ic t  S t o  be a r o t a t i o n  
matr ix  ( i . e . ,  choose 

eQ, 2 

+ 1 parameters. The  n lambdas i n  n(n  - 1) 
2 - 

2 

t h e  number of parameters w i l l  be cpn = 0) ,  
the  number required t o  represent  an a r b i t r a r y  symmetric 

matrix.  T h e  choice cp = 0 i s  i n t u i t i v a l y  motivated by t h e  con- 
s i d e r a t i o n  t h a t  w e  w i d  t o  r o t a t e  and s c a l e  t h e  e l l i p s o i d  assoc i -  
a t e d  w i t h  t h e  quadratic, form formed from t h e  pd matr ix  and do 
n o t  want t o  r e f l e c t  coordinates  o r  change t h e  handedness of t h e  
coordinate  system. 

T h e  f ac to r i za t ion  of a pd matr ix  of dimension th ree  i s  
thus given by 

T P = S A S  , 
where  

and 
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1 '  s'pl = s i n  cp 1 '  c'pl = cos cp 

Thus, i t  i s  clear t h a t  by using t h i s  representa t ion  under 
t h e  r e s t r i c t i o n s  

A .  > 0 , i = 1, 2 ,  ..., n 
1 

- T T < v i < T T  , i = 1, 2, ..., n - 1 

- 2 < Qi < 2 , i = 1, 2 ,  ..., ( TT TT n - l ) ( n  - 2 )  
2 

t h e  candida te  Q matrices are guaranteed t o  be p o s i t i v e  d e f i n i t e .  

9 



2. Solut ion of t h e  Liapunov Equation 

~ 

10 

The Liapunov equation, Eq. ( 4 )  , v i z .  

A P + P A = - Q  T , 

where P and Q are n x n symmetric matrices and A i s  a 
s t a b l e  n x n matr ixscan be solved f o r  P as follows: Assume 
t h a t  

a f. a i = n  i 
( A  - hi) , i = 1, 2, ..., r , 

i=l 

( 4 )  

T a r e  t h e  elementary d i v i s o r s  of A (and thus A ) over C , 
t h e  f i e l d  of complex numbers. Then t h e r e  e x i s t  matrices U , V 
such t h a t  

and 

(27) 
- 1" AT = V AIV 

- 
where  A1 i s  t h e  Jordan normal form f o r  A (and thus AT),  
i .e. ,  

A I  + N a j  r a  + N  , - . *  Y 1 a1 a1 2 "2 r r h21a A = d i a g  'A I + N 1 

I = (6ij) , i , j  = 1, 2, ..., a 
c1 IJ. CL 

.) , i , j  = 1, 2,  ..., a 
( 6 i + l , j  IJ. 

N =  
IJ. 

a 

and 6i j  i s  t h e  Kronecker d e l t a .  The Liapunov equation then 
becomes 



w h e r e  

Y = vpu-l 

and 

D = VqV-' 

I n  R e f .  5 ,  M a  gives  a f i n i t e  s e r i e s  so lu t ion  f o r  t h e  
matr ix  equat ion 

nd * 
A X - X B = C  , 

( 3 3 )  

( 3 4 )  

Q nJ 
where  A and B are i n  J o r d p  n o p a l  form. Thus, via t h e  
i d e n t i f i c a t i o n  X = Y , A = A1, B = - A1 and C = - D , t h e  
so lu t ion  t o  Eq. (31)  i s  obtained from Ma's so lu t ion  t o  Eq. ( 3 4 ) .  
T h e  so lu t ion  i s :  

Q 

w h e r e  Y e .  and D i j  a r e  t h e  i j  elements of t h e  E a r t i t i o n s  of 
Y and 'h' which are t h e  same a s  t h e  p a r t i t i o n  of A1. F i n a l l y ,  
w e  ob ta in  P as 

P = v-4u  ( 3 6 )  

from Eq. ( 3 2 ) .  Note t h a t  s ince  A i s  assumed s t a b l e ,  a l l  Ai 
w i l l  have negat ive real  p a r t s  and 

A. + A. f 0 i , j  = 1, 2, ..., r . ( 3 7 )  
1 J 

Thus, only t h e  f i r s t  case of Ma's so lu t ion ,  Eq. (35), need be 
considered h e r e .  Further ,  i f  A is  of simple s t ruc tu re ,  then 
t h e  s o l u t i o n  i s  

11 



where  yij and dij are elements of Y and D, r espec t ive ly .  

3 .  Penalty Function Formulation f o r  Cons t ra in ts  

0 To compute 6 and Q v i a  Eqs. (8) and (9) ,  w e  r equ i r e  a 
method f o r  handling t h e  respec t ive  c o n s t r a i n t s :  x E E ,  i .e. ,  
x such tha t  f ( x )  = 0 and x # 0; and Q i s  p o s i t i v e  d e f i n i t e .  
Since t h e  algorithm t o  be used t o  compute Eqs. (8) and (9) h a s  
been designed f o r  unconstrained problems, w e  w i l l  use  a device due 
t o  Courant (Ref. 6)  which i s  c a l l e d  t h e  penal ty  funct ion.  T h i s  
approach t o  constrained extrema1 problems h a s  been successfu l ly  
used i n  optimal con t ro l  and v a r i a t i o n a l  s e t t i n g s ,  e.g., see Kelley 
(Ref. 7), and M c G i l l  (Ref. 8 ) .  

Consider Eq. (8), which may be wr i t t en :  

1 = min ~ ( x )  on i < x >  = o . 
x f o  

A penal ty  function formulation of t h e  same problem i s  

,t = min ( ~ ( x )  + K ~ V  2.2 (x )g (x ) )  

X 

o r  

= min (V(x) + KIV 2.2 (x) + K2h(x)j 2 1 , 
X 

- 2  
V (x), i s  t h e  pena l ty  assoc ia ted  w i t h  n o t  meeting t h e  where 

c o n s t r a i n t  V(x) = 0 and g(x) o r  h(x) are designed t o  
penal ize  choices of x c l o s e  t o  o r  equal  t o  zero,  e.g., 

, m = 1, 2,  ... 1 + IIxl12m 

II x II 2m 
h(x)  = - 

(39)  

1 2  



In view of the parameterization we have developed for Q, 
Eq. (9)  may be rewritten as: 

- 
2 

(4 ) Rn 
J(Q) = max (det P) J(Qo) = max 

A penalty function formulation of the corresponding minimum 
problem (our numerical algorithm was written for minimum prob- 
lems) is: 

where 

I I 
'pK = - IT + (pK mod 2-r , - co < 'PK < 

< w  
8 = - 1 (- TT + e.' mod 2 ~ )  y - < e j  I 

j 2  J 

and 

p, any hi < E , i = 1, 2, ..., n 

by all hi > E , i = 1, 2, ..., n 
In the above penalty formulations, the constants K1, 9, 

K3 are chosen large enough to assure meeting the respective 
constraints to the required accuracies, and E is chosen to 
define a "forbidden" neighborhood of zero. 
actual penalty formulations used in the numerical experiments 
will be given in a later section. 

Details of the 
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4. T h e  Min-All Algorithm 

The numerical algorithm being used t o  compute so lu t ions  t o  
E q .  ( 8 )  and Eq.  (9 )  v i a  E q .  (40) and E q .  (42) i s  being developed 
a t  Grumman by M c G i l l  and Taylor and i s  based upon t h e  work of 
Davidon (Ref. 9)  and F l e t c h e r  and Powell (Ref. l o ) .  The a lgori thm 
u t i l i z e s  a modified gradien t  search concept and proceeds a s  
follows: 

T To f ind  t h e  minimum over a l l  x of f ( x ) ,  where  x = 
(XI, ..., %) and f ( x )  i s  a s c a l a r  funct ion,  choose an i n i t i a l  
po in t  x and an a r b i t r a r y  n x n p o s i t i v e  d e f i n i t e  symmetric 
matr ix  (e.g ., t h e  i d e n t i t y  matr ix) .  Then, l e t  

where 

and f ind  "k > 0 such t h a t  f(xk + %sk) i s  minimum w i t h  re- 
spec t  t o  ak. Now, l e t  

k+l = xk + %sk ' X 

I 

and compute f(\+l) and f ( ~ k + ~ ) .  Define 

and then compute Hk+l as follows 

where 

(46) 

(47) 



and 

T h i s  procedure i s  repeated u n t i l  

C . T h e  Numerical Experiments 

The  numerical experiments d e a l t  w i t h  two w e l l  known equa- 
t i o n s ,  viz., the  Duffing equation w i t h  damping, i.e., 

x1 = x2 

. - - x1 + 0.04 x1 3 x2 - - x2 
(54) 

and t h e  Van der  P o l  equation w i t h  uns tab le  l i m i t  cyc l e ,  i . e . ,  

. 
x1 = x2 

(55) 
2 ;c2 = - x2(1 - XI) - x1 . 

The  Duffing equation w a s  chosen because t h e  estimate of t h e  
domain of a t t r a c t i o n  could be obtained a n a l y t i c a l l y  (see Ref. 11) 
and thus  a r e l i a b l e  check of t h e  numerical r e s u l t s  w a s  ava i l ab le .  
T h e  Van d e r  P o l  equation w a s  chosen because t h e  domain of attrac- 
t i o n  of t h e  zero so lu t ion  i s  w e l l  documented ( t h e  i n t e r i o r  of t he  
l i m i t  cyc le )  and i s  f a r  from a quadrat ic  curve. 
be a good tes t  of t h e  conservativeness of t h e  estimate. 

Thus, i t  would 

1. Details of t h e  Experiments 

Both of t h e  equations whose domains of a t t r a c t i o n  of t h e i r  
zero s o l u t i o n s  are t o  be estimated are second order  and they both 
have t h e  same l i n e a r  p a r t .  
Q is :  

A s  a r e s u l t ,  t h e  parameter izat ion of 
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COS e s i n  8 

- s in  8 COS 8 
i 
\ O  

A cos2 e + h2 s in2  e 1 

(A2 - h l )  s i n  e COS e 

and t h e  Liapunov equation f o r  P 

0 -1 :: 1 -1 

p11 p12 

p21 p22 

0 

h2 

cos 8 - s i n  8 

s i n  8 COS 8 

(h2 - h l )  s i n  e COS e 

A s i n  2 e + h2 cos2 e 
1 

- 7 l - p < 7 r  

i s  

p12 

p22 

Since P i s  a 2 x 2 matr ix ,  i t  can be determined d i r e c t l y  
without recourse t o  t h e  method of so lu t ion  presented e a r l i e r .  
T h e  equations implied by E q .  (57) are: 

2 2 = A cos  8 + h2 s i n  8 p12 + p21 1 

= (Al - h 2 )  s i n  8 COS 8 +pH - p12 - p22 

= -(hl s i n 2  e + A cos2 e )  p12 + p21 - 2p22 2 

p12 = p21 

and t h e i r  so lu t ion  i s :  
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2 2 (h l  cos 8 + h2 s i n  e) 1 - -  
p12 = p 2 1  - 2 

Fur ther ,  one can scale a l l  t h e  equations by an a r b i t r a r y  con- 
s t a n t  without a f f e c t i n g  t h e  solut ion.  For s impl i c i ty  w e  choose 
h i 1  as t h e  scale f a c t o r  and obta in  t h e  form i n  which t h e  equa- 
t i o n s  were programmed: 

p12 1 (cos2 e + A s in2  e )  
1 

'1 = -  
p12 A1 

I p22 1 = - = -  p22 hl 2 (1 + A) 

The Liapunov funct ion i n  a l l  cases,  except where noted, was 

I t s  derivatives with respec t  t o  t h e  Duffing equation and t h e  
Van d e r  P o l  equation 
given.  r e spec t ive ly  by: 

have t h e  same quadra t ic  p a r t  and are 

17 
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( s in2  e + A cos 2 e)x;] + 0.04 p12x 4 
1 + T  

3 + 0.04 p22x1x2 

ir, - -  - 2 2  x x  3 1 + p12x1x2 + p22 1 2 

I n  both cases ,  t h e  terms of order higher  than second are of 
four th  order and thus,  a candidate  g(x) i n  Eq. (39) is:  

- 2m g(x) = IIXII , m = 4 ,  5, ... 
2.  Chronicle of Experiments and Resul t s  

The  e a r l i e s t  experiments done using t h e  approach described 
above dea l t  w i t h  t h e  Duffing equation and the determination of 
R f o r  given A, 8 (see Ref. 1). The e a r l y  experiments per- 
formed under t h i s  con t r ac t  i nves t iga t ed  t h e  problem of computing 

It was determined t h a t  R could 
i s  on t h e  boundary of t h e  allowed 

b6 ca lcu la ted  s u f f i c i e n t l y  near  Qo f o r  our purposes, i .e. ,  
J ( Q )  t o  within 10 percent of J(Q0); however, t h e r e  was re- 
peated d i f f i c u l t y  w i t h  t h e  algorithm computing t o  t h e  g loba l  mini- 
mum, a = 0 a t  x = 0. A t  t h i s  s t a g e  w e  were using Eq. (39)  w i t h  
g(x) = 1. Experiments were begun w i t h  g(x)  as def ined i n  Eq. ( 6 4 ) ;  
however, t h e  r e s u l t s  were unsa t i s f ac to ry  s ince  t h i s  form f o r  g(x) 
reduced the e f f e c t i v e  value of Kf f o r  1x1 > 1 and thus t h e  
accuracy w i t h  which t h e  c o n s t r a i n t  w a s  m e t  depended on t h e  com- 
puted x. The funct ion g(x)  was then  changed to :  

1 +  x g(x) = , m = 4 ,  5, ... 
II x II 2m 
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T h i s  formulation d id  remove t h e  global  minimum without ma te r i a l ly  
a f f e c t i n g  t h e  e f f e c t i v e  value of Kf, but  i t  a l s o  introduced 
l o c a l  minima whose loca t ions  and values were unknown. Thus, t h i s  
approach w a s  abandoned s ince  it appeared b e t t e r  t o  compute t o  a 
w e l l  known unwanted so lu t ion  than t o  a poorly known unwanted solu- 
t i on .  
search poin t ,  another Min-All loop was incorporated t o  obtain a 
poin t  on t h e  cons t r a in t  T h i s  w a s  done v i a  computing 
on t h e  expression 

To remove t h e  dependence of t h e  algorithm upon t h e  i n i t i a l  

$(x) = 0. 

2 Here, one stepped t h e  value c u n t i l  zero was t h e  computed mini- 
mum and thus  a point  of i n t e r sec t ion  of t h e  c i rc le  of rad ius  c 
and t h e  curve v(x) = 0. T h i s  was then modified t o  make use  of 
t h e  a c t u a l  V(x), v i z . ,  

n 

X 

where,  again,  c 2 i s  stepped u n t i l  an i n t e r s e c t i o n  of V ( x ) = c  2 
and o(x) = 0 i s  obtained. T h i s  procedure removed t h e  dependence 
on t h e  i n i t i a l  search point .  

The problem of computing Qo 
t h e  determination of t h e  i n i t i a l  point per Eq. (67)  and R per 
Eq. (39 )  w i t h  g(x) = 1 a s  inner  loops. T h i s  worked w e l l  f o r  
t h e  Duffing problem although some d i f f i c u l t i e s  were encountered 
when A w a s  c l o s e  t o  t h e  boundary h = 0. It d id  not  work w e l l  
a t  a l l  f o r  t h e  Van der  P o l  problem and i n  both problems t h i s  ap- 
proach w a s  believed t o  be very t i m e  consuming. 

v i a  Eq. (42) was then run w i t h  

A t  t h i s  point  our a t t e n t i o n  was focused on t h e  Van der  P o l  
equat ion and an attempt w a s  made t o  reformulate t h e  problem such 
t h a t  it becomes a simultaneous minimization over x and A, 8. 
T h e  new formulation i s :  

I x,h,e C 

1 - 
2 +  K!$7(x,h,B) +K2V 2.2 (x,A,B) 
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The f i r s t  term i s  t h e  r ec ip roca l  of t h e  a rea  of t h e  f i g u r e  given by 

t h a t  h a s  parameters A , 8  and t h a t  passes through t h e  po in t  x. 
The next  two terms are t h e  penal ty  terms f o r  minimizing V on 

= 0 and the  las t  term i s  t h e  penal ty  f o r  nonposi t ive lambda. 
When G(A) was as given i n  E q .  (45)  w i t h  E = 0, very poor 
convergence r e s u l t e d  and very small  a r eas ,  compared t o  r e s u l t s  
obtained by a manual t r i a l  and e r r o r  search, were obtained. 
Epsilon was then chos n p o s i t i v e  and when it  reached t h e  known 
optimal value of A,A , t h e  convergence improved. T h i s  i s ,  
however, hardly p r a c t i c a l .  

6 

The problem was again modified. The  f i r s t  term of E q .  (68) 
was changed t o  

(Note t h a t  t h e  l e f t  s i d e  of Eq. (68) i s  no longer t h e  minimum 
value 05 the new expression.)  
when cA > 2.1 ,  which i s  near t h e  optimal value.  A s  cA 
approached 2 . 1  from above 2 . 3  t h e  convergence of t h e  a lgo-  
r i t h m  de te r io ra t ed  r ap id ly ,  

Here, t h e  a lgori thm conve ged 5 

A problem t h a t  had been apparent throughout e a r l i e r  experi-  
mentation w i t h  t h e  Van der  P o l  equation again appeared. 
four  branches t o  t h e  
p a i r s  (see Fig.  1). Thus, t he re  are four  l o c a l  minima w h i c h  a r e  
equivalent ,  f o r  our purposes, i n  p a i r s  and t h e  algorithm shows no 
knowledge of t h e  ex is tence  of t h e  o the r  t h r e e  minima when i t  i s  
converging on t h e  four th .  T h i s  in t roduces a s i g n i f i c a n t  problem, 
viz., how t o  determine when t h e  des i r ed  r e s u l t  has been computed. 
The  only approach t h a t  i s  apparent now i s  t o  e l imina te  t h e  com- 
puted .ninimum and t r y  t o  compute a lesser minimum; however, t h i s  
i s  usua l ly  not  successfu l  because new meaningless minima a r e  in -  
troduced i n  the  process of removing a minimum. The a l t e r n a t i v e  
i s  t o  reformulate t h e  problem completely so t h a t  t h e  des i red  
r e s u l t  i s  t h e  g loba l  minimum or  t h e  only minimum of t h e  new 
problem. It i s  no t  a t  a l l  apparent how one does t h i s .  However, 
t h e  indicated s e n s i t i v i t y  of t h e  convergence a l s o  suggests t h a t  
a s ign i f i can t  e f f o r t  should be devoted t o  formulating a new mini- 
mum problem t h a t  w i l l  y i e l d  t h e  des i r ed  r e s u l t s .  

T h e r e  a r e  
t p  = 0 locus and they are symmetrical i n  
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3 .  Higher Order Estimates 

Throughout t h e  experimentation w i t h  t h e  Van der  P o l  equation, 
i t  was apparent t h a t  t he  "optimal" quadrat ic  estimate of t h e  
domain of a t t r a c t i o n  w a s  considerably smaller (roughly 
than t h e  ac tua l  domain and t h a t  they had no boundary po in t s  i n  
common. 
h igh er order es t imate  . 

50 percent)  

Thus, w e  t r i e d  t o  evolve a technique f o r  g e t t i n g  a b e t t e r  

The  Zubov method (Ref. 12)  i s  a method of f ind ing  t h e  exact do- 
main of a t t r a c t i o n  by solving a p a r t i a l  d i f f e r e n t i a l  equation f o r  t h e  
Liapunov function. Zubov showed t h a t  h i s  equation could be solved 
using a s e r i e s  of homogeneous polynomials and t h a t  a t runcated 
series so lu t ion  would provide an estimate of t h e  domain of a t t rac-  
t ion .  There a r e  two p r i n c i p a l  d i f f i c u l t i e s  i n  using t h e  Zubov 
method: 1) t h e r e  i s  an a r b i t r a r y  funct ion t h a t  must be chosen 
properly;  and 2)  t h e  convergence of t h e  series so lu t ion  i s  very 
nonuniform i n  t h e  sense t h a t  successively b e t t e r  estimates are 
no t  necessar i ly  obtained by including higher  order  terms. 

Our experimentation w i t h  t h i s  method was based on t h e  hope 
t h a t  t h e  a r b i t r a r y  funct ion could be der ived from our "optimal" 
quadrat ic  Liapunov funct ion and t h a t  i t  might improve t h e  con- 
vergence of t h e  series so lu t ion ,  i n  f a c t ,  make each es t imate  suc- 
ces s ive ly  better.  

The form of t h e  Zubov equation w e  d e a l t  w i t h  was: 

-= dV d t  W * ( A x  + f(x)'-: = - cp(x) (,+(Ax + f (x) )T  (Ax + f(x))) 

where V is  t h e  Liapunov funct ion and cp(x) i s  t h e  a r b i t r a r y  
funct ion which  can be taken t o  be a quadra t ic  form. 
cedure was t o  take t h e  series s o l u t i o n  t o  be i n  t h e  form 

Our pro- 

co 

i 
v(x) = 1 Vi(X) , Vi(CX) = c v(x) 

i = 2  

w h i c h  i s  a series of homogeneous polynomials beginning w i t h  
second order,  and t o  choose -cp(x) t o  be t h e  quadrat ic  p a r t  
of t h e  time de r iva t ive  of t h e  "optimal" quadra t ic  Liapunov 
funct ion,  viz  . , 

T O  cp(x) = x Q x . 
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Equation (71) i s  then solved f o r  
i n  t h e  s e r i e s  f o r  both t h e  Duffing and Van der  Pol equations.  
The new Liapunov funct ion i s  then 
t h e  domain of a t t r a c t i o n  Dq i s  then obtained as 

V ~ ( X ) ,  which i s  t h e  next  term 

and t h e  estimate of V 2  + V4 

where 

(XlC2(X) + O4(X) = 0) . 
The r e s u l t s  were unsa t i s f ac to ry  i n  t h a t  although t h e r e  was a 
s i g n i f i c a n t  improvement i n  the  fourth order  estimate f o r  t h e  
Van de r  P o l  equation, there was a degradation i n  t h e  case  of t h e  
Duffing equation ( see  Figs.  2 and 3). Thus, using t h e  ''optima1" 
quadra t ic  Liapunov funct ion t o  determine the  a r b i t r a r y  'p func- 
t i o n  does not  produce an improved est imate  i n  a l l  cases. 

4. Conclusions 

A procedure f o r  computing t h e  "optimal" quadrat ic  es t imate  

Experi- 
of t h e  domain of a t t r a c t i o n  of an equilibrium so lu t ion  of a 
quas i - l i nea r  d i f f e r e n t i a l  equation h a s  been developed. 
ments have shown t h a t  t h e  computation of an estimate, given a 
set of parameters, [computing ,t E q .  (8) l  i s  a reasonably 
robus t  process;  however, t h e  computation of t h e  optimal param- 
e t e r s  
The problem t h a t  seems t o  be fundamental i n  both processes i s  
t h a t  of computing l o c a l  minima of a func t ion  of many va r i ab le s .  
A poss ib l e  b l e s s ing  i n  our formulation i s  t h a t  t h e r e  i s  no unique 
formulat ion f o r  t h e  funct ion w e  minimize t o  solve our problem. 
Thus, continued experimentation should lead t o  t h e  funct ion which  
makes t h e  process more robust.  The i d e a l  s i t u a t i o n  i n  a l l  events  
would be t o  have t h e  so lu t ion  t o  our problem be t h e  s o l e  minimum 
of t h e  func t ion ,  but  it i s  not  c l e a r  how one cons t ruc t s  such a 
f unc t i  on . 

[Qo of E q .  (9)] is ,  a t  present ,  a very s e n s i t i v e  process.  

23 



The procedure developed and examined h e r e  does have t h e  ad- 
vantages of :  1) r e l a t i v e  i n s e n s i t i v i t y  t o  dimension; 2)  no t  
r equ i r ing  any matr ix  inversions;  and 3) providing an estimate 
which  i s  r e l a t i v e l y  easy t o  v i s u a l i z e  ( a  hypere l l ipso id)  . 

Combination of t h e  Zubov approach and t h e  "optimal" quadrat ic  
Liapunov function does not  always y i e l d  a b e t t e r  higher  order  
es t imate  of t h e  domain of a t t r a c t i o n .  
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Comparison of the Optimal Quadratic Estimate, $2; , and the Fourth Order Zubov 
Estimate, R4, for the Duffing Equation, Eq (54) 
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111. ESTIMATION 02;' TEMPORAL BEHAVIOR 

Since booster  guidance systems are operat ive over f i n i t e  i n -  
t e r v a l s  of t i m e ,  s t a b i l i t y  analyses of such systems must be based 
on short-t ime considerat ions.  The system must be guided from an 
i n i t i a l  s ta te  a t  time to t o  a f i n a l  s t a t e  a t  t i m e  to 4- T. I f  
t h e  system i s  perturbed from i t s  path, i t  must reach some pre-  
sc r ibed  neighborhood of t h e  f i n a l  s t a t e  within t h e  i n t e r v a l  of 
t i m e  T i f  it i s  t o  be considered s t a b l e .  

Several recent  papers  have d e a l t  w i t h  t h e  problem of es t imat-  
ing t h e  t r a n s i e n t  response of a c l a s s  of l i n e a r  o r  l i n e a r i z e d  non- 
l i n e a r  sys tens  from t h e  Liapunov s t a b i l i t y  equations,  Refs. 13 and 
14. I f  a Liapunov funct ion,  V(x), e x i s t s ,  upper and lower bound 
es t imates  on t h e  ra te  of decay can be obtained from 

w h e r e  q u  and q Q y  r e spec t ive ly ,  g ive  t h e  upper and lower bounds 
03 t h e  smallest and l a r g e s t  t i m e  constants  of t h e  system. 
t h e  q u a l i t y  of t h e s e  estimates depends on t h e  choice of funct ion 
V(x). These papers  do not provide information about how t h e  
Liapunov func t ion  should be chosen t o  provide t h e  b e s t  
estimates. On t h e  o ther  hand, Liapunov h a s  shown t h a t  f o r  a 
l i n e a r  autonomous system, t h e  Liapunov funct ion wbich g ives  t h e  
exact  rate of response of t h e  system can be determined, Ref. 15. 
I n  essence,  t h e  methods proposed in  Refs. 13 and 14, seek t o  f ind  
an upper and lower bound on the  r a t i o  of some Liapunov func t ion  
and i t s  d e r i v a t i v e ;  t h e  method proposed by Liapunov determines a 
funct ion,  o r  set of func t ions ,  such t h a t  t h e  r a t i o  of t h e  funct ion 
and i t s  d e r i v a t i v e  i s  cons tan t  f o r  a l l  X. 

Hovever, 

Consider t h e  n th order system 
e n t i a 1  equat ions 

dx 
d t  - = A X  

of l i n e a r  autonomous d i f f e r -  

(78) 
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where x is an n x 1 column vector and A is an n x n con- 
stant matrix. 

2 m 

x1 n 

It is desired to find a homogeneous function 
m n of degree m such that X 0 . .  x 

( m p 2 ,  ,m n ) ml 
v(x) = c P 

n 
w = (aslxl + a x ... + a sn x n ) ax av = YV 9 

S 
s2 2 

s= l  
(79) 

where y is a constant. By equating coefficients of the same 

products of the form x1 

homogeneous equations result where 
The equations aresolved by finding the set of eigenvalues yi 
and the set of eigenvectors 
Liapunov functions V.(x). Liapunov has shown that the eigen- 
values yi can be deiermined directly from the expression 

m 
a set of N linear 

n(n + 1) ... (n + m - 1) 
m! 

m2 n x2 0 . .  x ml 
n 
N = . 

Pi which determine the set of 

= m A + m. A + + m. A ‘i il 1 12 2 in n ’ 

where the hi are the eigenvalues of the matrix A and the 
mi 
relation 

are the sets of all nonnegative integers satisfying the 

mil + mi2 + ... + min = m  . 

For each eigenvalue yi and the corresponding Liapunov 
function Vi(x), the following differential equation results: 

C onsequen t ly , 

w i t  
vi(t) = Vi(0) e . (83)  
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Liapunov's method provides an exact method f o r  determining 
t h e  t r a n s i e n t  response of a l i n e a r  system. 
portance of t h e  method i s  not i t s  app l i ca t ion  t o  l i n e a r  systems, 
but  i t s  poss ib le  extension s o  t h a t  t h e  t r a n s i e n t  response of 
quas i - l inear  systems may be determined w i t h  more accuracy than 
t h e  es t imat ion  procedures of Ref s .  13 and 14. 
posed i n  Refs. 13 and 14 a r e  approximate even f o r  t h e  l i n e a r  case.)  
It i s  a l s o  believed t h a t  f u r t h e r  study of Liapunov's method f o r  
f ind ing  Liapunov func t ions  w i l l  be u s e f u l  i n  developing e f f i c i e n t  
techniques f o r  obtaining b e t t e r  es t imates  of domains of a t t r a c t i o n .  

Of course,  t h e  i m -  

(The methods pro- 
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I V .  ANALYSIS OF A SYSTEM WITH TIME 

DEPENDENT CLOSED-LOOP GUIDANCE 

Booster guidance c o n t r o l  systems are described f o r  f i n i t e  
i n t e r v a l s  of t i m e  by nonl inear ,  nonautonomous d i f f e r e n t i a l  equa- 
t i o n s  w i t h  con t ro l  l a w s  which are i n  some cases  determined 
by i t e r a t i v e  procedures. Because t h e  standard w e l l  known t e c h -  
niques of s t a b i l i t y  ana lys i s  a r e  not  r e a d i l y  appl icable  t o  such 
systems, new techniques,  o r  v a r i a t i o n s  of present  Liapunov methods 
a r e  being sought. 

I n i t i a l  research i n  t h i s  a r ea  h a s  cons is ted  of determining 
t h e  s t a b i l i t y  of a simple c o n t r o l  system t h a t  conta ins  character- 
i s t i c s  representa t ive  of t h e  more complex booster  guidance systems. 
Spec i f i ca l ly ,  w e  are concerned w i t h  guiding t h e  motion of a p a r t i c l e  
moving a t  constant speed i n  a plane i n  t h e  presence of a cons tan t  
disturbance. The dynamics of t h e  system are given by 

0 

= V  + v s i n u  , x2 0 

where v i s  t h e  magnitude of t h e  v e l o c i t y  of t h e  par t ic le  r e l a -  
t i v e  t o  the disturbance, Vo i s  t h e  dis turbance and u i s  t h e  
d i r e c t i o n  of t h e  ve loc i ty .  The c o n t r o l  l a w  u ( t )  i s  such t h a t  
t h e  p a r t i c l e  i s  guided from t h e  i n i t i a l  po in t  
f i n a l  point i n  minimum t i m e  i n  t h e  f ace  of dis turbances 

by l e t t i n g  v = 1, Vo = 1 / 2 ,  xy = xy = 0 and xf = 2 ,  x2f = 1. 

t h e  optimum con t ro l  l a w  for*minimum t i m e  i s  
corresponding t r a j e c t o r y  XI = t ,  x2 = t / 2 ,  
T f  = 2 .  T h e  i n i t i a l  dis turbance i s  assumed t o  be randomly d i s t r i -  
buted w i t h  a b i v a r i a t e  normal d i s t r i b u t i o n  of e r r o r s  i n  i n i t i a l  
condi t ions w i t h  mean value 0 and s tandard devia t ion  0.1. The 
c o n t r o l  law i s  assumed t o  be l i n e a r ,  t i m e  varying, and of t h e  form 

(xp,xy) t o  t h e  

i n  t h e  The  problem h a s  been made more s p e c i f i c  

1 

u*(t)  = 0, 
and nominal t i m e  

I n  the absence of any dis turbance i n  t h e  i n i t i a l  condi t ions ,  
w i t h  t h e  * 
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where  

For t h e  s p e c i f i c  problem considered, w i t h  

pl0 = 0.153 pll = 0.090 

P~~ = -0.305 P~~ = -0,195 , 

t h e  mean square m i s s  of t h e  t a r g e t  point  ( 2 , l )  i s  0.00139; 
t h e  r e s u l t i n g  expected f i n a l  t i m e  i s  2.00287. 

The s t a b i l i t y  problem f o r  t h e  system described above may 
be s t a t e d  as follows: 
w i l l  t he  p a r t i c l e  reach a point  i n  some 
f i n a l  s ta te  ( 2 , l ) ,  i -e . ,  

From what s e t  of i n i t i a l  s t a t e s  (xf,x;) 
€-neighborhood of t h e  

f 2 f 2 
( X I  - 2) + (x2 - 1) < E , 

sub jec t  t o  t h e  c o n s t r a i n t  Tf 5 M, where M i s  some constant .  

To determine any c h a r a c t e r i s t i c  of t h e  problem t h a t  might 
be u s e f u l  i n  t h e  development of a general  s t a b i l i t y  technique, 
an a n a l y s i s  of t h e  system response w a s  undertaken. 
i n i t i a l l y  assumed t h a t  t h e  con t ro l  l a w  u ( t )  was t i m e  i nva r i an t ,  
i.e., 

It was 

Thus,  t h e  system i s  described by 
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r 1 

w i t h  t h e  equilibrium so lu t ion  y1 = y2 = 0. 

T h e  l o c i  of equi l ibr ium po in t s  f o r  E q s .  (32, a r e  given by 

, n = 1, 2,  ... p10 2nr 
y1 + p20 = - -  e 

p20 Y2 

l i es  on t h e  Thus, i f  t h e  i n i t i a l  point  
locus,  t he  so lu t ion  f o r  y,(t)  and y 2 ( t )  w i l l  be cons tan t  
i n  t i m e ,  and t h e  t r a j e c t o r i e s  i n  t h e  
given by 

0 0 0 0 
(y1 = x1 , y2 = x2) 

x i ,  x2-plane w i l l  be 

( 9 3 )  

x,(t)  = t + X1(O) 

T h e s e  t r a j e c t o r i e s  are p a r a l l e l  t o  t h e  optimum t r a j e c t o r y  and 
do no t  converge t o  t h e  t a r g e t  po in t .  

To f ind t h e  complete t r a j e c t o r i e s  i n  t h e  y1,y2-plane, l e t  
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then from E q s .  (92) 

-1 z ( t )  = 2 t a n  

Solving f o r  z ( t )  , 

- p20 1 

p10 
Y 

-P20t 1 - ke 

where 

By s u b s t i t u t i n g  Eq.  (97) i n t o  E q s .  (92), and in t eg ra t ing ,  

Y l ( t >  = 2 2p1~2 [ t a n  3 p20 (ke -P20t - 1) - t a n  -1 - p10 (k - 1) 

p10 + p20 p20 

+ Yl(0) 
p20 In  p i 0  I 

+ 2  '10 + '20 2 (ke -P20t -1) +2 p50 

p10 

-1 p10 

p20 p20 
- 1) - t a n  - ( k -  1) -' k (ke  -P20t 

Y,(t) = 2 2 
p10 + p20 
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- 
2 2 

p10 + p20 

In  

[(k - 1) 2 + f )  p20 e -2P20t 

p10 
3 
L 

G O  -2p t 
20 - 1 )  +2 (ke 

p10 

+ Y2(0) . 

It i s  evident from E q s .  (98) and (99) t h a t  i f  t h e  i n i t i a l  po in t  
i s  on t h e  equilibrium locus,  Eqs. (99) reduce t o  

It  can a l s o  be een from Eqs.  (99) o r  Eq. (97) t h a t  i f  t h e  
i n i t i a l  point [yl(O),  y2(0)) does no t  l i e  on t h e  equi l ibr ium 
ocus, and i f  p20 i s  r e a l  and negative,  then t h e  f i n a l  po in t  

[yl(m), y2(w)) w i l l  l i e  on t h e  equi l ibr ium locus.  Thus if ~ 2 0  
i s  r e a l  and negat ive,  every so lu t ion  y ( t )  tends t o  t h e  set  of 
po in t s  w5ere 

2n7r , n = 1, 2,  ... - p10 

p20 y1 + p20 - - -  
y2 . 

An approximate ana lys i s  of t h e  response of t h e  system when 
t h e  con t ro l  law i s  t i m e  varying, as given by E q s .  (85) and (86), 
can be ca r r i ed  out i f  p l ( t )  and p 2 ( t )  are approximated by 

s t a i r case"  funct ions such t h a t  11 

(99) 
(Cont . ) 

I n  t h e  n th i n t e r v a l ,  i .e.,  (n  - l ) T  < t < nT , 
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f o r  0 < 

By using 
equation 

w h e r e  

T < T. The cons tan t  kn i s  given by 

E q s .  (101) and (102), t h e  following l i n e a r  
f o r  kn r e s u l t s :  

k - F k  n n n-1 

Solving Eq.  (103) y i e l d s  

k =  n 

o r  

k =  n 

n 
k +;, 

1 

T- 

0 
i R - 

i 

. 

d i f f e rence  

( 10 5A) 

(105B) 
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The approximate loca t ion  of t he  p a r t i c l e  a t  any i n s t a n t  of 
t i m e  i s  then spec i f i ed  by 

j =1 

where 

T h e  work c a r r i e d  o u t  t o  da t e  h a s  e s s e n t i a l l y  cons i s t ed  of 
analyzing t h e  given system and has  r e s u l t e d  i n  Eqs. (106) and 
(107) .  It w i l l  now be necessary t o  study t h e s e  equat ions along 
w i t h  t h e  t r a j e c t o r i e s  t h a t  r e s u l t  from a computer s imulat ion i n  
order  t o  determine c h a r a c t e r i s t i c s  t h a t  w i l l  enable development 
of a s t a b i l i t y  ana lys i s  technique t h a t  does no t  r equ i r e  a solu- 
t i o n  of the system equations and w i l l  be app l i cab le  t o  boos te r  
guidance systems. To achieve t h i s ,  research e f f o r t s  should be 
d i r ec t ed  toward examining t h e  p o s s i b i l i t y  of applying s tandard 
Liapunov s t a b i l i t y  techniques over each i n t e r v a l  
and using t h e  information obtained f r a n  t h e s e  i n t e r v a l s  t o  con- 
c lude s t a b i l i t y  f o r  t h e  e n t i r e  i n t e r v a l  
a poss ib le  approach t o  the  problem descr ibed above would be t o  
determine a s e t  of Liapunov func t ions  Vn(x), where Vn(X) i s  
t h e  Liapunov funct ion f o r  t h e  system descr ibed i n  t e i n t e r v a l  
nT < t < (n + 1)T. The system descr ibed i n  t h e  n t k  i n t e r v a l  
wauld be analyzed f o r  s t a b i l i t y  without  consider ing the  f i n i t e  
l e n g t h  of the i n t e r v a l  and the  donain of asymptotic s t a b i l i t y  
implied by each funct ion Vn(x) would be determined. The region 

(n -1)TS t <  nT, 

0 < t s T f .  For example, 
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i n  which t h e  system s ta te  l i e s  a t  t i m e  
termined using t h e  methods of Refs. 13 and 14 or  Liapunov's method 
which i s  described e a r l i e r  i n  t h i s  r epor t .  I f ,  f o r  a l l  n, t h i s  
region l i es  within t h e  domain of asymptotic s t a b i l i t y  f o r  t h e  
system described i n  t h e  
i s  smaller than t h e  domain of asymptotic s t a b i l i t y  f o r  t h e  system 
described i n  t h e  nth i n t e r v a l ,  f i n i t e  t i m e  s t a b i l i t y  could be 
c onc luded . 

(n + l )T  could be de- 

(n + l ) s t  i n t e r v a l ,  and i f  t h i s  region 
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V. THE ITERATIVE GUIDANCE MODE 

The booster  launch veh ic l e  using t h e  i t e ra t ive  guidance scheme 
described by Chandler and Smith  (Ref. 16) may be regarded as a non- 
l i n e a r ,  sampled-data system. A model represent ing t h e  system f o r  
t h e  two dimensional sphe r i ca l  ea r th  conf igura t ion  may be formulated 
i n  s t a t e  space. 

It  i s  convenient t o  descr ibe t h e  system i n  a q , (  coordinate  
system such t h a t  t h e  q-axis  i s  t h e  ea r th  centered plumb l i n e  and 
t h e  t o t a l  g r a v i t y  force  a t  t h e  cut-off  point  i s  i n  t h e  q -d i r ec t ion .  
The equations of motion of t h e  vehicle are then given by 

4 '[ = a ( t )  cos + g 

.. 
q = a ( t )  s i n  h + g , 

rl 

where  a( t )  i s  t h e  longi tudina l  vehicle acce le ra t ion  given by 
a ( t >  = Vex 9 * A i s  t h e  s t e e r i n g  angle;  g4 and gq are 
g r a v i t y  components. The remaining terms i n  E q .  (108) are de- 
f ined  by 

V = exhaust v e l o c i t y  ex 

m = i n i t i a l  mass 
0 

ti = mass flow r a t e  

m 

lil 

0 't = -  

t = t i m e .  

T h e  s t ee r ing  l a w  h i s  computed t o  gu'de t h e  vehicle from 
some i n i t t a l  s ta te  (e(o), q ( o ) ,  [(o), {(o)) t o  some f i n a l  s ta te  
(Ef, q f ,  4,, q f ) .  In  t h e  problem considered @ere, only t h e  f i n a l  
a l t i t u d e ,  q f ,  and t e f i n a l  v e l o c i t y  ( if ,  q f )  are spec i f i ed ;  
t h e  range (qf - q(0) i s  unspecif ied.  The cut-off  po in t  i s  de- 
termined by t h e  of t i m e ,  T,, needed t o  achieve t h e  f i n a l  



state  and consequently i s  dependent on both the  i n i t i a l  and f i n a l  
s t a t e s .  I n  t h e  case  of t h e  range coordinate ,  q(0)  depends on 
T f .  (qf = 0 as a r e s u l t  of t h e  coordinate system chosen.) 

The s t e e r i n g  l a w  w a s  derived on t h e  assumption of a f l a t  
earth w i t h  a uniform g rav i ty  f i e l d  (Refs. 1 7  and 18), and i s  of 
t h e  form 

nJ 

h = h - (K1 + K2t) , 
% 

where A ,  K1, and K2 are constants  dependent on the  i n i t i a l  
and f i n a l  states. To approximate t h e  f l a t  earth assumption i n  
the  case  of t h e  sphe r i ca l  ea r th ,  g rav i ty  i s  assumed t o  be con- 
s t a n t  over t he  f l i g h t  p a t h  and equal t o  t h e  average of t h e  values 
of g r a v i t y  i n  t h e  i n i t i a l  and f i n a l  states. 

I n  order  t h a t  t he  system be adaptive and a d j u s t  f o r  devia t ions  
from t h e  nominal path which r e s u l t  from t h e  approximations made and 
e x t e r n a l  dis turbances,  t h e  state of t he  system i s  evaluated a t  d i s -  
c r e t e  sampling i n s t a n t s ,  t = nT, and t h e  instantaneous s t a t e  a t  
t h e  sampling i n s t a n t s  and t h e  required f i n a l  s t a t e  a r e  used t o  de- 
termine t h e  t i m e  t o  cu t -o f f ,  Tc(nT); t h e  average g r  v i t y  components 
&(nT) = 3 gE(nT) and &,(nT) = $[%(nT) + $(Tf(nT)y]; and the  
s t e e r i n g  l a w  A(nT) necessary t o  guide t h e  s sterll from t h e  i n s t a n t a -  
neous s t a t e  t o  t h e  f i n a l  state.  During t h e  i n t e r v a l  nT< t <  ( n + l ) T ,  
t h e  s t e e r i n g  l a w  i s  given by 

where 

L(nT 
B(nT) = .cL(nT) - )(nT) 

(111A)  

(111B) 

1 
q f  - [q(nT)+ i(nT)Tc(nT) +T gv(nT)T%(nT)]+ s(nT)sin:(nT) 

KL(nT) = * 
[s(nT) - B(nT)Q(nT)] cos  A(nT) 

(111c) 
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z - nT 
a - Tf(nT) L(nT) = In  (111D) 

( 1 1 1 E )  s(nT) = 'ex [ (' - Tf(nT))  In ~ nT - Tc(nT) 
' 

Tf(nT) 

2 

Q(nT) = .cs(nT) - 2 -(nT)Tf(nT) + (nT) Tf(nT) 
(111F) 

Tf(nT) = nT + Tc(nT) 

To obtain Eq. (108) i n  s ta te  space form, l e t  x1 = 4, 
x2 = i, x3 = '1, x4 = Ti. The system dynamics then become 

. 
x1 = x2 

4 ic2 = a ( t )  cos h + g 

. 
x3 = x4 

. 
= a ( t )  s i n  A + g , 

x4 'I - - 
where  A = h - K1(1 - Bt) and A,  K 1  and B are given by 
E q s .  (111). Equation (112) can be r e w r i t t e n  as 

k = F ( x , x f , t )  . 
The system described i n  t h i s  s e c t i o n  i s  i n  many ways similar 

t o  t h e  time dependent closed-loop system descr ibed i n  t h e  previous 
sec t ion .  Both systems are nonautonomous and nonl inear  and t h e  
form of the sys tem dynamic equations f o r  each case are similar.  
However, t h e  s t ee r ing  angle  determined by t h e  i terat ive guidance 
scheme i s  f a r  more complicated than t h e  time dependent s t e e r i n g  
angle described i n  Sec. I V .  

40 



We bel ieve  t h a t  a s u i t a b l e  s t a b i l i t y  ana lys i s  technique ap- 
p l i c a b l e  t o  guided space vehic les  using t h e  i t e r a t i v e  guidance 
mode i s  not  imminent. T h i s  i s  pr imari ly  due t o  t h e  f i n i t e  t i m e  
operation, and t h e  lack  of meaning of t h e  comparison of d i s turbed  
and nominal t r a j e c t o r i e s  which i s  fundamental t o  standard s t a b i l i t y  
analyses.  Indeed, t h e  whole concept of s t a b i l i t y  must be examined 
and redefined i n  order t o  have meaning f o r  such s y s t e m .  Once 
t h i s  h a s  been accomplished, r e s u l t s  f o r  t h e  s t a b i l i t y  ana lys i s  of 
systems such as t h a t  described i n  t h e  previous sec t ion  w i l l  be 
forthcoming and w i l l  serve as t h e  bas i s  f o r  t h e  ana lys i s  of t h e  
more complicated systems. 
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V I .  CONCLUSIONS AND RECOMMENDATIONS 

The  r e s u l t s  w e  have obtained t o  d a t e  i n d i c a t e  t h a t  one can 
c e r t a i n l y  obta in  an estimate of t h e  domain of a t t r a c t i o n  of an 
equi l ibr ium so lu t ion  of a quas i - l inear  dynamical system and it  
seems f e a s i b l e  t o  compute an optimal quadrat ic  estimate. One 
may a l s o ,  i n  some cases, improve an optimal quadrat ic  estimate 
by using t h e  Zubov method t o  obtain a higher  order  estimate. 
The t h r e e  problems which seem t o  be fundamental t o  t h e s e  pro- 
cesses and which r equ i r e  more research are: 
compute t h e  minima of a funct ion;  
whose g loba l  minimum o r  only minimum i s  t h e  so lu t ion  t o  t h i s  optimal 
es t imat ion problem; and 3) how t o  compute successively b e t t e r  
higher  order es t imates .  

1) how t o  successively 
2 )  how t o  formulate a funct ion 

A review of Liapunov's work led  t o  rediscovery of h i s  method 
f o r  e s t ab l i sh ing  t h e  exact temporal behavior of a l i n e a r  system 
which c o n t r a s t s  sharply w i t h  t h e  approximate methods t h a t  have 
been advanced i n  t h e  recent  l i t e r a t u r e .  I f  t h i s  method can be 
e f f e c t i v e l y  appl ied t o  es t imat ing t h e  temporal behavior of quasi-  
l i n e a r  systems, then w e  w i l l  have an approach t o  t h e  s t a b i l i t y  
ana lys i s  of f i n i t e  t i m e  systems i n  t h e  sense of es t imat ing t h e  
amount of cont rac t ion  between a set  of i n i t i a l  s tates and t h e  
corresponding set of f i n a l  states. 

T h e  ana lys i s  of a simple closed-loop guidance system and a 
review of t h e  equations of t h e  I terat ive Guidance Mode poin t  out 
t h a t  t h e  m o s t  se r ious  problem t h a t  must be solved i n  order t o  
reach t h e  lo2g term goal  of t h i s  study i s  t h e  formulation of 
wha t  s t a b i l i t y  means i n  a f i n i t e  t i m e  process whose goal  i s  t o  
reach a point  i n  space, n o t  t o  follow o r  remain near  a p a r t i c u l a r  
path.  The o ther  obvious problem i s  t h e  development of techniques 
f o r  analyzing nonautonomous, nonl inear ,  f i n i t e  time systems w i t h  
respect t o  the  s t a b i l i t y  d e f i n i t i o n  t h a t  i s  evolved f o r  these 
systems. 

I n  summary, w e  have examined some of t h e  t h e o r e t i c a l ,  
computational and p r a c t i c a l  aspec ts  of t h e  problem of eva lua t ing  
t h e  s t a b i l i t y  of guided space veh ic l e s ,  and w e  have ind ica t ed  what  
appear t o  be  t h e  fundamental problems and some l i k e l y  approaches 
t o  t h e i r  solution. Y e t ,  w e  have only scra tched  t h e  sur face  of an 
important and apparently very d i f f i c u l t  problem t h a t  w i l l  r equ i r e  
a g rea t  deal more research. 

42 



REFERENCES 

1. Geiss, G. R. ,  Estimation of the Domain of At t rac t ion ,  Grumman 
Research Department Memorandum RM-3165, March 1966; a l s o  i n  
II Progress Report No. 8,  Studies i n  t h e  F i e l d s  of Space F l i g h t  
and Guidance Theory," NASA George C .  Marsha l l  Space F l i g h t  
Center.  

2.  L a S a l l e ,  J. P., and Lefschetz,  S., S t a b i l i t y  by Liapunov's 
Direct Method w i t h  Applications,  Academic Press ,  New York, 
1961. 

3 .  Gantmacher, F. R . ,  T h e  Theory of Matrices,  Vol. I, Chelsea 
Publishing Co., New York, 1959. 

4. Murnaghan, F. D.,  Lectures on Applied Mathematics, Vol. 111: 
The Unitary and Rotation Groups, Spartan Books, Washington, 
D.C. ,  1962. 

5. M a ,  Er -Chieh ,  "A F i n i t e  Ser ies  Solut ion of t h e  Matrix Equation 
AX - XB = C," Journa l  of SIAM on Applied Mathematics ,  Vol. 11, 
No. 3, May 1966. 

6. Courant, R. ,  "Variat ional  Methods f o r  t h e  Solut ion of Problems 
of Equilibrium and Vibrations," Bull .  Amer. Math. SOC., V o l .  49, 
pp. 1-23, 1943. 

7.  Kelley,  H. J. ,  "Method of Gradients," Optimization Techniques, 
G. Leitmann, ed., Academic Press, New York, Chap. 6, p. 230, 1962. 

8. M c G i l l ,  R., "Optimal Control,  Inequa l i ty  State Cons t ra in ts  and 
t h e  Generalized Newton-Raphson Algon thm," J. SIAM on Control,  
Ser.  A, Vol. 3, No. 2 ,  pp. 291-298, 1965. 

9. Davidon, W. C . ,  Variable Metric Method f o r  Minimization, A.E.C. 
R e s e a r c h  and Development Report ANL-5990 (Rev.), 1959. 

10. F l e t che r ,  R.,  and Powell, M. J. D., "A Rapidly Convergent 
Descent Method for Minimization," The Computer Journal ,  
Vol. 6 ,  1963, pp. 163-168. 

11. Geiss, G. R., T h e  Analysis and Design of Nonlinear Controls 
via  Liapunov's Direct Method, Ph.D. d i s s e r t a t i o n  Polytechnic 
I n s t i t u t e  of Brooklyn, June 1964, Appendix 11. 

43 



1 2 .  

13 . 
14. 

15. 

16. 

1 7 .  

18. 

Zubov, V. I., 11 Questions i n  t h e  Theory of LiaFunov's Second 

Method; The  Construction of t h e  General Solut ion i n  t h e  
Domain of Asymptotic S t a b i l i t y , "  Trans la t ion  No .  389, Mi l i t a ry  
Products Group Research Department, Minneapolis-Honeywe11 
Regulator Co . 
Vogt, W. G . ,  "Transient Response from t h e  Liapunov S t a b i l i t y  
Equation," Proceedings of t h e  JACC,  1965. 

Brauer, F., II Liapunov Functions and Comparison Theorems, II 
Nonlinear D i f f e r e n t i a l  Equations and Nonlinear Mechanics, 
ed i ted  by J. P. L a S a l l e  and S. Lefschetz,  Academic Press, 
1963, pp. 435-441. 

Liapunov, A. M.,  "Probleme G6n6ral de l a  S t a b i l i t h  du 
Mouvement," (Ann. of Math. Studies,  No. 17) ,  Princeton Uni- 
v e r s i t y  Press ,  Princeton, New Jersey,  1947. 

Horn, H. J . ,  Martin, D., and Chandler, D . ,  "An I t e r a t i v e  
Guidance Scheme and I t s  Application t o  Lunar Landing," NASA 
Technical Note D-2869, J u l y  1965. 

Fr ied,  B. D. ,  "On t h e  Powered F l i g h t  T r a j e c t o r i e s  of an 
E a r t h  S a t e l l i t e , ' '  J e t  Propulsion, Vol. 27,  June 1957, 
pp. 641-643. 

Lawden, D. F . ,  "Optimal Rocket T ra j ec to r i e s , "  J e t  Propulsio?, 
Vol. 27 ,  December 1957, p. 1263. 

44 




